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. 1. INTRODUCTION

-,

With the introduction of Zadeh’s basic paper_in 196 ,i 1],a
new approach to the modeling of uncertainty beganN\A he

fledgling discipline of fuzzy set theory has now grown to en-
compass well over two thousand papers. (Sec the 1800 refes-

ences in [7], as of 1979 ) ‘Applications of fuzzy sct rcclq(.’qucs

have been made to a wide variety of subjects, too numerods
to be mentioned here. (See, e.g., Dubois and Prade’s recent
“text {2)) As early as 1971, Zadeh himself recognized the
role that level sets! played-with respect to fuzzy sets {22}
In 1975 Negoita and Ralescu [ 14} (see also [ 17]) obtained a
representation-theorem for fuzzy sets and certain of their
operations. (See also [16] for another level set approach.)
Independent of this development, Goodman {4} in an unpub-
lished paper in 1976 derived a simple homomorphi¢ relation-
ship between fuzzy and random sets and their operations - in
this case the fevels of the set .nvolved were randomized uni-
formly (See also Nguyen's reformulation of* this result [ 15].
A listing of papers contrasting the classical probability and
fuzzy set approaches is given in the introductory section of
[6] Additional comments on the controversy may be found
in (11, (3], [13}, 18] - [20}.)

The two recent (independent) papers of Héhle [9) and Good-
man (6) estabhsh that, at least from a formal viewpoint,
there exist systematic connections between fuzzy set theory
and its operations, and probability theory and corresponding
operations, via the concept of random sets. In the latter
paper, one of the connections (Sy-type) makes use of the
basic level set mapping, used carlier in (4], while another
('l'()-lypc) 15 related to the product probabihity measure

obtained from statistically independent 0-1 marginal random DD AR I
variables with parameters related to a given fuzzy set. Specif-

ically, it was shown (summanzed in Theorem 1 of this paper)

that for any given fuzzy subset A of space X, there always

. exist random subsets S(A) of X (in general, non-unique) such

that A and S(A) are equivalent under all one point coverages,
i.e., 9a(x) = Pr (xe S(A)), for all constant x e X. Furthermore,
most of the commbon fuzzy set operations, such as union, n-
tersection, complimentation, subsetting, cartesian product,
and functional transform correspond homomorphically under
the mapping A - S(A), for all fuzzy A, to ordinary operations
for random sets (summanzed in Theorem 2 here). Consequent-
ly, these fuzzy set operations can be reinterpreted directly in
terms of corresponding ordinary set operattons among random
scts. One application of this connection 1s to deductive reason-
ing, where both fuzzy set and probabihistic techniques can be
compatibly utilized [5]. (See also, [6], Theorems 5-7.)

'lie thrust of this paper 1s to expand carlier unary and binary
lsamomorphic relations between fuzzy and random set opera-
tions, by obtaiming systematic charactenizations for three
classes of n-ary fuzzy set operations, which under the map-
pmg A - HA yor any fuzzy subset A of X, yicld homomor- -
phiv images, i.¢., ordinary set operations applicable to the

random sets S(A):"\B
—
1. generahzed compositoMBinary operalions are pre-

sented in Theorem 3, unary operations, in Theorem 4, and -
n-ary operations in Theorem 6):,

2 cominuousg‘-;corcm 5 demonstrates the general case,
Corollary 1 exhibuts charactenizations for statstically inde-
pendent image random sets, and Corollary 2 1s concerned with
a certnn simplificd subdlass of continuous opcrnligx);)(

R

gf]nc:hur.lhlc (Theorem 7). . .
In the case of binary Tuzzy set operations leading to homo-

morphic random set compositiong (Theorem 1), the charac-
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-terizing structure for the membership function is a simple

sum of at most:four terms, each term being also an elementary
combmahonfdf the individual component membership func-
tions andjora funct;onal form that satisfies a constraint equa-

‘uon.(Eq (2)) - sec@lso Examples | and 2 for further clanfi-

>Ih turn, ’this leads to- 16 subtypes of binary opera-

1l éxplicitly ‘I;xvcn in Table 1. These include as special

{ zZy union, mtuscctlon, bounded summation, product.
ete. Fok unary. operanons, on the other hand, only identity,
fuzzy complement, the nhull set reducing operation, and the
universal set expan?lmg operation, as given in Table 2, lead to .
homomorphic-random sg:t compositions. Another relatively
simple charactén’za‘uon is obtained in Corollary 1, for n-ary

fazzy-sét operatlons lcadmg to continuous homomorphic
random set opcratlons when the n random set factors are

chosen to be statistically independent, and when the mapping-
A~ S(A) is either of two types: S(A) = Sy(A) or S(A) =Tp
(sec Thedrem.1): Part (m) of Theorem 6 also exhibits a
straight forward charactérization — a sum of products of
factor m'embe[ship functions and/or their complements — for
n-ary fuzzy set operations leading to homomorphic random
set operations which are in the form of compositions and for
which the individual random set factors are chosen to be
statistically independent. Theorem 5 and a specialization of
it, Corollary 2, present very general — and somewhat more
complicated — characterizations for fuzzy sct operations
leading to arbitrary continuous random sct image operations.
In this case, a typical n-ary fuzzy set operation is shown to be
determined by a (pointwise-dependent in structure) finite
signed sum of probabilities corresponding to cach random set .
factor cover of a given fixed finite subset of X which is also
disjoint from another such subset of X. Theorem 6, which
treats the general measurability situation can be interpreted-as
being a uniform limiting case of reapplications of Theorem 5.

2. PRELIMINARY DEFINITIONS AND RESULTS

Let X denote a given base space, P(X) its power class; G(X),
often iuentified with the latter, the class of all membership
functions of elements of P(X); F(X) the class of al} fuzzy sub-
sets A — identified with the class of fuzzy sct (o1 subset)
membership functions ¢4 : X - [0,1]; S(X) the class of all
random subsets — identified with the class of all probability
measures on P(X), with suitably chosen g-algebras containing
the sets C(x) ={BIxeBeP(X) xcX. (Sec [6]). Let S, 8"
€S(X) and A € F(X). Define A =S’ (or $' = A) by, PA(x)
=Pr(x¢S'), forall x € X. Define A < 5" by, 5(x) €

Pr(x e §"), for all x € X. Note ‘& means “is defined to be
equal to”,

To provide necessary background, two previously established
theorems are summarized and reformulated.

Theorem b — (Goodman {6}, Theorem 3)
(i) S(X)=USx(X),
AcliX)
where S(X) 97 {S(A) 1 S(A) € S(X) & A = S(A)) :

U indicating disjoint union.

A Gii) If A e P(X), then Sjy(A) =T, = Aand (A}= SAX)

(ii) Eachs$ A(‘() is nonvacuous, and in fact, Syy(A), TA €
SA(X), where Syy(A) € d [U 1}, U a umform ran-
dom variable over [0,1 ] is dctcrmincd by ¢1, which

corresponds to the product probability measure of the
statistically independent 0-1 random variables 4’1‘ (x)

with Pr (¢T (x)=D=ga(x)all x e X.

If W e S(X), then A(W) eF(X) is defined by ¢4 cy) () &
Pr (xeW), xeX. Note, by definition, A(W) = W. Note also,

-W, Sy (A(W)),,TA(W) €S A(W) 2re in gencral all distinct.

Fuzzy set operations @ , - , (%), proj;,(® are defined as.
PA @ BX)EQAX) +op(x) = S5(x) * Op(x) ;
PA-BX) EPA(X) - ¢p(x) ;

SAR) BXY) =0A(x) - ¢p(y) ;
Pproj (D)X} = sup $ (x,y);
proj;(D) ve D

SA@ B =A P + (-Neg(x);

‘A is identified with H=EN0<A<].
(The fuzzy set operations U,?\, X. =1, (), etc., are_the.usual
ones.)

Theorem 2 — (Modification of Goodman {6), Theorem §)
Forany A, BeF(X),CeF(Y),fX—'Y DeF(XxY):
Sy (AUB) = S5 (A) US(B)

Sy (ANB) = Sy (A) NS(B) .
Sy (AXC) =Sy (A) XSy(C)

Sy (X~A) =X~S;_y(A) .

(excluding the boundary ¢ (1-U))

Sy (A € (Sy(A)

Syt =11 sy(en

Sy (projy (D)) = proyy (D) = proy; (Syy (D)
TA@B = TpVUTy

Ta.p = TaANTy

TA@C = TR XTe

Tx-m X=Ty

Tia) £ ATy

-1
Tt = 7100

Tl’roj; (D) ~
TA@®B = ANTHUEI-NNTE),

where Ty, T, T are to be chosen to be mutually statistieally
mdependent,

proj) (D) £ projy (Tp)

Let S 2 F(X) = S(X) be such that for cach A ¢ F(X). S(A)
¢ S A(X) for some fixed chioice of S(A). Then S js called a

We will be concerned with the speatication ol‘Jomt distribu-

tions of (S(A ). . . S(A)) for all finite n and all A Ag

T AR
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€ F(X). Thus, if a set-valued stochastic process(S(A)) Ack(X)

df s, indexed by F(X), over P(X), caa be constructe?, all
marginal distributions of the S(A)’s will be specified-and con-
sistently.defined. This indeed will be the case for two important

examples of S : S(A) = SUA' where Uy 1s.uniformly distributed-
over [0,1], A€ F(X) and S(A) =T a» A € F(X). For-any pair
of such.random sets S(A ), S(A9) (considered as a bivanate *

mareinal random object from $), the following constraint and
relations must hold: Forany A}, Aye F(X)and xe X,

B2(Ap, Ags ) Y Pr (xe S (A]) & x €S (Ag)). )

§7 always satisfies the fundamentai joint probability constraint-

Ly (A An S8 (AL ARXIS UL (AL AGX) ,  (2)
where |
Ly (As, Ay ) Y max (025 (x & S(A)))
+Pr(xe¢ S(ag))-1)
= max (0,05, () 94,01,

df

=%ap® @)
Ua (Ay, Ay :x) &1 min (Prixe S(A ), Pr(x e S(A

= min (c‘:Al(X) .¢A2(X))

= 6Anp(X) » @)

using Theorem 1.

1t should be *emarked that L, and Uy depend only on the

marginal p. wbabilitics. For the statistical independence case,
52(1‘\], AZ %k)=Pr(xe S(AI))'PI (xe S(!\z)) =¢AI(X)* .
oA ‘(x) alwavs satisfies Eq. (2).

Then «sing the basic propertics of marginal and joint random
variables and Eqs. (1)-(4) and Theoreni 1, the four possible
joint probabilities for the events x or £ S(A}) and x€or é

S(An) - cquivalently, for the 0-] r:mdom variables ¢S(/\ I )(x)
and x) - ¢an be determined:
¢S(Al)( )
Prixe S(Al )& x e S(A9)) = Pr(xe S(Al) N SlAz))
=Pr (OS(,\l)(X) =1& ¢S(,\2)(x) =D =4 (A1,A2.%) (5)
Prixe SIAD) & x £ SIA9) = Pr(x e S(A)—1S(A9))
=Pr (¢S(A|)(K) =1& ‘:'S(Az)(x) =0)
=¢A|(x) - 52(!\[. 1\2 1 x) ©)
Prixd S(l\l J& x¢ Sh\z)) SPrixe S(f\z)"i S(l\l))
=Pr (éS“\l)‘X) =0 &éS(Az)(X) = )
oA A Ar 0 ")
Prixé S(A]) & x € SIA2)) E Prixe X=(S(A)) USIA»)
= Pr(¢5('\ i )(x) = 0 & l’S(Az)(x) ={))
=07 (=0, (X) FEa AL Ay %), 3}
Ihe above results muay be extended to the jomt distnbution,
ol any és“'\l Fxh.. . °S(1‘\")(x)' subjecl (o copsistency

conditiony (or jomt U=1 cvents — agan, see 16}, Lemmas
1.2 and Theorers 3) Hereat s sufficient to speafy for ) =

Loy W Priogia o =1&..&

¢S(Aj)(") = 1), 1n order to obtain the enfs 2 joint distnbution

of xeord S(Aj),j =1, .., n;in which.cas: ...y such joint

probability, analogous to Eqs. (5)-(8) can be written a5 a
simple positive and/for negaiive combination ofﬂ)':..

_l%inmple I. Thecase S =T(7) .

By choosing, forany A, Ay e F(X) and xe X, §3 (A}, Ay .
x) arbitrary fixed but satisfymg the constraint in Eq. (2), this
specifies the total joint distribution of the 0-1 random varia
bles (¢T;\ (x), ¢TA (x)). -Keep x fixed. Then by a similar

1 2

argument, Pr (¢TAl(x) =1 &.¢»]-A7(x) =1 &¢TA3(X) =1)

may be chosen arbitrary subject to a constraint (see-[6],

Lemmas |, 2 and Theorem 3 for a similar result), and the

construction may be extended indefinitely, yiclding all- - =
consistent (or projective) finite combinations of marginal

probabilities for all A}, Ay, A3 € F(X). Then (e.g., sce [12],

pp. 92-95) a probability measure My, can be obtained for the
base space X {0, 1} = {0, 1} FX) =G(F(X)) (with a-

heF(X)
corresponding g-algebra of subsets) such that for any [\l, Ay

€ F(X), (¢TAl(x) , ¢TA2(x))corrcsponds to the (A, Az)“'

G

marginal distribution with respect to u,, etc.
Again note the special case §3(A], Ay, x) =¢A|(x) : ¢A2(x) ,
forall A, A, € F(¥), leads to a consistent construction
of uy by clivusing all margiral 0-1 random variables &r\(x)
. 4

to be statistically independent. In addition, note that for any
construction of the Ty ’s, we can always consider probability
measure pty to correspond to mutually statistically indepen.
dent probability measures, for cach distinet x € X. Hence, in

turn, product probability measure g can be constructed from
the p,'s. Thus pt corresponds to a well-defined joint probabi.

listic specification of the process (¢TA I'A € R(X)), or equiva-

lently, for (Ty | A € F(X)), which is compatible witk all origin.
al one- and two-level marginal distributions of the TA's. Th_us
any given collection of fuzzy stbsets can be made to corres-

pond (o a single joint probability measure which is compatible
with the relations A = T and possible additional bivariate

distributional constraints on (T, ., Tp). forany A, B € F(X).
]

Example 2. The case S =Sy .

As u second example, consider the situation when S = SU.

More precisely, consider S(A) = SUA(A). for any A ¢ F(X).

where Uy 15 4 umiformly distributed random variable over

{0. 1], Let W be the probability distnibution func...x for the

standardized normal distnibution n (0, 1). Define the trans-

form 7 by:

r XR = RO x100) 2 101X 2 prxy. -
AckX) Ack(X)
where for any
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= F(X) df
f (xA)A I‘(X) eR ,7( & (4’("A)) ACE(X) *
“Let y 1 F(X) X F(X)~ M, be any given marginally consistent.

correlation function where M ‘_l-_—_f {(: {)I -l1<r<g II and

let m : F(X) = {0} be the zero mean function. Then a unique
-gaussian stochastic process V = (V A) ACF(X) can always be

constructed over RFX) corresponding to probability
measure g, etc., which has the specified -y and m.-(See, e g.
{10}, for more details:) Then, since it readily follows that r
is a measurable mapping, (V) = (¥(V A))A}; FX) is a stochas-

tic process over (0, llF X) with the-following properties:

{(i) Forany A € F(X), the marginzl random vanable » A ‘_-’-_!
W (V) is uniformly distributed over (0, | }.

(if) §qucg( to consistency for y.forn=land any Ay, ..,
Ap €F(X), xe X, 4 (A}, .., Ay; x) can be made arbi.
trary.within natural constraints (again sce {6], Lemmas
1, 2:and Theorem 3). In particular, forn =2, §5 (A},
A ; x) may be chosen arbitrarily to satisfy Eq. (2) (for
the usual consistency checks). (This follows directly
from a continuity argument applied to the two boundary
values in Eq. (2), which cosrespond to r = 1{yielding
Uy =Uy Yand r=-1 (yielding Uy =1-U, ), for

Ay = Uay (yielding Al Az)

(AL A9))

(iii) The following two special cases of (ir) are of particular

importance:

(2) Choose all Uy, A € F(X) to be statistically indepen-
dent and idcptically distributed -~ with common
distribution being a uniform one¢ over (0, 1}.

Thus all SUA (A), A e F(X), are statistically indepen-

Jeut. (This corresponds to correlations ( : lr ) =l
(b) Chonseall Uy = U, A e F(X). Thus all SUA(A) =

Sy(A), A € F(X) are highly statistically dependent.
(This corresponds to correlation matrices
I ry_ ( 11
(‘r I ) “\ l) )
Finally, note that no matier what choice functign S s used,
forn 21 fixed, S(Ay}), - ., S(A;) can alwavs be chosen to be
statisticallv independent marginal random sets of the product
probability measure p = Xp ., cach uy corresponding to S(A).
AeF(X)

3. THE BASIC PROBLEM

With the prelimunary results established, we may now posc the
basic problem. Let S be a general choice function and assume
(StAD ey 18 some well-defined stochastic process over
PCXY. Hence, (S(A ). oo S forall Ap, .. AL e FIX)
can be assigned consistent joint distributions. Then for certan
classes of’ ordmary set operations * : P(X) X=X P(X) = P(X)
we seek corresponding classes of fuzzy set operations .
FUX) X+ X% FIX) =~ F(X) such that @ mduces a weak-n-homo-
morphism relative to *, 4.,

Si® (A, A= @ Ay . Ay

~*(S(A}),. ., S(AL)), )
forallA JsresAg€ F(X).
Converscly, given any fuzzy sct operation @, it is of interest
to determine if some ordinary set operation * exists satisfying

9).

We will consider three general (nested) cases for *; composition,
continuous, measurablé,

Consider first the composition case. We say-ordinary set
operation * is a generalized compositionff  hy: X -+ X.
k=1,..,nand foreach xe X ,3 g,.:{0,1} X--X {0,1} >
{0,1} such that for all By, .., B, ¢ P(X),
¢*(B', . B )(X) =gx (¢Bl (hl(x»; ..

-9p, (1 (2))-(10)

Note that for any gwcn By, .-, n' hy, .. hy, x asabove
*(By,..,Bp) can be any-of 24 mssnbl': combinatiors for 3,,
invol+ing ordinary unions, intersections and complements of

the sets th'(Bl), . h;l (Bg).

4. BINARY AND UNARY-COMPOSITIONS

Thevrem 3

Let n = 2 and S be a given chdice function w,th all bivariate

(S(A+), S(A5)) assumed to have specified consistent joint

distributions.

(i) Then binary fuzzy set operation ® in.luces a weak
2-homomorphisin relative-te.some * being a generalized
composition (as in Eq. (10)) iff @® has the following
form:

% @A) A!)(x)= 8x(0.0) (k=94 | (hy(x}), - ¢A2(l{2(x))
+ §2(A). i x)
Fgx(1,0) - (¢,\‘(h|(x)) =427y, Ax X))
FEx(01) * B, (20D _ (A}, Ag: )
+g5(1,1) - §afA), Agix) ay

for all Al, AseF(X)and xe X1 gy(i.j) e (0.1}

(i) By varyng the distributions of S(A ). S(A5)) and the
function gy : (0,13 X {0,1}{0,1}, the §2(A}, Ay x)

«an be chosen arbitrary fixed to satisfy Eq. (2),up to
consistency. Note, 1 addition, that the statistical

independence case §o (Ay, AL x) = °A|("’ ¢,\3(")
always satisfics Eq. 2. In general, the coefficients 8, (ij)
* may be arbitrary £ 10,1} for1.j c{0.1} sforall Ay, Ay e
FiX)yxc X,
1Prout o@;(’\ LA E PR X (STAY, S(AN
"”"*(S(,\,) StaNtx) = 1
=Py (L.x (ﬁb('\l )(h l(k)). OS('\z)(Hz(X”) =1}

= bt Tl hlx)y=
ﬂl.j)C[:;l(l))'r OS('\I)( 1=

& OS(I\z)ulzlx” =)

wiich yields the torm m Ly cnin by aggann use o kg
(5)-(8))

S
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Note the application of Theorem 3.(via Examples | and 2
previously discussed) to the special cases: S(A)= SUA(A),

foreither Uy = Uy-or Uy mutually statistically independent.
for all A e F(X), where U and each UA are idenncally distrib-
uted uniform over {0,1]; and Tp-

v Table 1 exhibits, for a given S;x € X; A, Ag e F(X):hy, hy:
the 16 possible types of binary fuzzy set operations @ induc-
ing weak homomorphic ordinary set operations * in compo-

sitional form. By following the comments at the end of-
Example 1, a similar_table (now using {3 in addition‘to §4) of

223 =256 entries may be constructed, ctc. (See Theorem 6
for the general composition case.)

Thus we see that several different binary fuzzy set operations
can induce the same homomorphic image ~ binary random
set operation — for (e same fixed choice function, by varying
the st:]ljsfical dependence (or stochastic process) between the

random séts.
=

The analogue.to Theorem 3 for unary.operations 1s an 1mport -
ant special case:
Theorem 4
Let n =1 and S be a given choice function. Then unary fuzzy
set operation @ induces a weak 1-homomorphism relative to
some * being a generalized composition iff @ has the follow-
ing form:

Sa(A) (%) =8,(0) * (1= (h(x))) gy (1) " SAR(XD,

i i (12)
where as g, : (0,1} {0,1} vanes, g,(0), g,(1) may be arbi-
trary ¢ {0;1} ; for all A € F{(X), x e-X. In this sntu:mon, for
any xeX,BeP(X),

x € * (B) iff x € g(B) (x), (13)
where forany y € X,
df :
sBY (V)= Y . .
~ e S;I(I) (fori=1) - -(fori=0)
again using the convention N () =X ,.U() 5o
. o V-4

bl By = unlBy |, (4)

Table 1. Tabulation of Possible Binary Fuzzy Set Operations Inducing Wcak
Homomorphxc Ordinary Sct.Operations in Compositional Form.

Case g (1) *(S(A1). S(A)) P8 (A}, A
1 ;r o 0
5 (©0) X7 (S(3 ) U b (S(35) =9, By () - 8, (N 46, - .
K 3 ©on} . hzl(s(c\z)) '”l}l(s('\ )] 4’.\2("2(")) -4
4 0.0} (S0 ) b3 (S(A5) op, 010D~ 6
s ) h;‘(sm.))nhs'(m.z» §2
6 ©.0) X=47 (S(A) =0, (a0 .
7 (00, (1.0)} X413 (53 ) =0, 01ax)
8 ) {(0.0).C1.1)} X4t} Ista Mah; Hsta F=0p, 00D =0, (2252 :
. 9 {©01).0.0) 7 (S(A ) 3 13 (StA) Oa, (N * 05, 0(D) - 245 -
10 (©n.0.) 310 Oagthac)
T (0.0).01.1)) CENY o, i)
12 {(0.01.(0,15, (1.0)} X1 (57 S ) O3 S -5 .
3 10.0).(0.1). (113} 13 (S MU (X =087 (St ) F-op, Byl 62
14 {10.01,01.0).(1.1)) s s F-0y,fhaled £ 42
15 {013,110, (1,13} By st U3 st ¢,"b-,«x» * oy st -
o {10,0),4€.1). 11,0}, (1,1} X !

§a = £alA e Ax xhmay be asbuirary sansfying Exp (2). gy isassumed to be the same forall x € X.
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Table 2 lists the fourpossible unary fuzzy set operations
Zicading to weak homomorphic ordinary.set operations in
. composition form.

Table 2. Tabulation of Possible Unary Fuzzy Set Operations
Inducing Weak Homomorphic Ordinary Operations in Com-
" positional Form.

Case | g5 (1) * (S(AY) %8 (A)X)
1 4 & 0

2 | (0} X=n"VSA)  1-8,0(x)
3 L - l(sean & 5 (h(x)

4 o1} - X 1

5. GENERAL RESULTS

The following more general results require some topological

background. (See, e.g., [11] for all relevant definitions and
.. general relations.)

“Let @ be the discrete topology on {0,1} . Thus the open sets

for Dconsist of P({0,1}-). Then the natural topology Ifor .

-G(X), noting G(X) = x(o).(n—= 0,1 | is the cartesian
X€

product (or, equivalertly, pointwise convergence) topology.
Open sets for I consist typically of alf unions of sets of the
form
o) Y (05165 GX) &0 (z) =3;, fori
=1,..,q}, 15)

where

Zg( ).a‘"(«) izeX, e (04} i=1,...q

z€ X XX X,a¢{0,1} X--X {0,1} (5 fuctors); q > 1, can ali
be chosen arbitrary. In turn, 1et% be the n:tural cartesian

product topology for G(X})x--X G(X) (n factors). In this case,

the open sets for consist of all unions of scts of the form
O X=X €, ,where cach &; is arbitrary open for, I

Note that for any ordinary sct operation *, there is 2 unique
corresponding &, , & 1 G(X) XX G(X)~ G(X) (n factorsj.
Then forany x¢ X, By, .., B, € P(X),

Ox(By, ... By) " W@py---e¥p,) (o
and
xex(By,..,Bp) ilf x(B). .., B =

lrf(u(¢3'.--.¢3 D=1

- i @p,...0p Ve & (O(x1). an

In partscular we can et B; = S(:\‘) (A€ F(Xy;3=1l, .., n. We

_say fuzzy set opcrauon @ induces a weak n-homomorphism
relative to ondimary set operation * being continuous i o 15
continuous with respect (o topologies (¥.9Nand Eq. (9}
holds.

@ 15 compact. Hausdorff, and second countable and scparable
Consenuently, the product topoloes thy TychnolT's
Theorem) Fand ¥ are also compact and Hausdorff. }f X

an at most, countably mfinite space, then Fand ¥ will also be

second countable and separable.

Theorem 5

Let n > 1 be arbitrary fixed and let S be a given choice func-

tion with all (S(Ay), - . S(A,))) assumed to have a specnﬁcd

consistent distribution.

(i) Then n-ary fuzzy set operation ® induces a weak
n-homomorphism relative to some ordinary set operation
* being continuous iff ® has the following-form:

¢®_(A|. . An) (x)

=pfor & (M,; SSAPCS XN, )
veK, j=1 g

Z (__l)card (B) +1 .
, over all B,
G#Be F(Kx), for
- M(Bj) NN(Bj) =0
forallj, 1 €j<n

: 'p;( £ OUBHCS) S X N@ ). 08)

forall Ay, .., Ay € F(X) and x € X, where not depending on
the A, s, 3 fmtc (or vacuous, sets My, Ny, € P(X) with
M(B,,) U \l,, i ,N(B,j) = UB \',, it sforeach xe X, Ky is

some fmtc mdcx set.
(1) Not only may the (S(A}),.., S(An)) be vaned in jomnt

distribution, but also the ) \lw ’s and N,z s may be chosen
arbitrary finite (or vacuous) « P(¥) ; kx may be chosen
also asan arbitrary finite index set, for cach x ¢ X.

=
{Proof:
‘Using Eq. (17), for any ordinzry continuous n-set operation »,
forany By,...B e P(X)andx e X,

xe*(By. ..By

il (Op. -1 9p )€ X j Oyj - 3))

ve l\

for some finite index set Ky, ete.

iff Or ( My, C ng_ X -‘ll\f,,j)) . (§1)]
ek \j=
where
My df (Zujl 1 Kt Ky such thatay, = 1} (203)
Ny 4 (Zyj0 11 St & aqyysuchthata, =0})  (200)

Corollary |

Supposc for given chowce function S, that, furany Ap. LA
€ F(X) 50Aq). . Stag) are always mutually statisticaliy
idependent. Then the charactenzation for @ m Theorem §
can he made to depend on ALy through ¢ d'\“

threctly asd not on probatulity statements imvolving S(:\’)‘

Ay

=l enforany Ay A € FOOL when aither case 1 or

- :’:x‘.q,siaw

iclg
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case 2 holds_for choice of S:

Case 1: Forany A e F(X). S(A) = SUA(A), where as marginal
random varjables, each-U is uniformly distributed over {0,1],
but jointly all U’s for different A’s are mutually statistically
independent. In this case, the characterizing equation, Eq. .
(18), becomes

6 = I nedbl.
BlA shAn) over all B,

o#BeP(Ky),

for M(B,j) N N(B,j)

=g, forallj, 1 <j<n/

n
-1 ' (B, A}, (¢2))
=1

W'(B, A Hinf (§. () - inf {ylyeX& ¢, [y,1)
yeM(B,i) , ]
NN(BJ) =a} . (22)
-Case 2:  Forany A € F(X), S(A) = T, where jointly all of the
Tp’sare mutually statistically independeat. In this case, the
characterizing equation, Eq. (18), becomes

_pycard BEf
over all B, =n
A#BeP(Ky)
for M(B,j) " V(B.})
=g, forallj, 1 <j<n

P A\ ,..,An)(x) =

"?] w" (B, l\j)} ' (23)

j=t )
fBAY  n s 0 -9,
SO el vev e N gy

|
Corollary 2
Let n > | be arbitrary and § a given choice function with all
S(Ap. .- S(:\n)) assumed to have a specified distribution.
(i) Then n-ary fuzzy set operation @ induces a weak
n-homomorphism relative to some ordinary set operation
* being continuous such that the sum in Eq. (18)
becomes a non-negative ong, 1.¢., all terms for non-
singleton B are vacuous, i.c.

2By, AN

n
= ve};;{ Pr(,;cl.\x,,j CSMEX -«.\’,j) 1))
x j

and thus in Eq.(19), defining #, Or 1s replaced by
veKy

(')’r( (disjont). iff for all x € X and each pairy, vr € Ky,
veK

with v-# vy, there 1s an integer . | <) % n, such that
' M ON
esther I,'. ;0

Vs #irof M"g-l e N”l' i Fay, such

that Eq. (25) holds.

(1) I3 also Sis chosen so that SIA ). . StAgare all
mutually staistically mdependent. tor all Ap. . LA,
¢ F(X, hien the charactenzing equations  Ey. (21)

for case (1) and Eq. (23) for case 2 — in (i) become
here, respectively

n
= ’- . .
BlAy - A u:?(x e e

n
%B(A, .., AK) = VZ;(X jgl_w“ (1. A),  (23)
where w’ is given in Eq.(22) and w"-in Eq.(24). for

B=(v}.

: n

Note that for Corollary 1 and 2, the construction of induced
homomorphic *, given @ , remains formally the same asin
the general case as given in Eq.(19).
Consider now the case of generalized composition.
Theorem 6
Let n = 1 be arbitrary fixed and let S be a given choice
fenction with all (S(Ay), ... S(AR)) assumed to have a
specified consistent dis}ribuﬁon.
(i) When# isa generalized composition, * is continuous,

since, for any x€-X,

&t (a1 = v, X o3, 3) .
@y,.35) € g5 (1) §=1
(26)

(ii) n=ary fuzzy set operation @ induces a weak n-homomor-
phism relative to some ordinary sct operation * being a
generalized composition iff ® has the following form:

OB (A}, AX) =
(gx(n;...,an) . s

((al,.z..an)‘e
{01} x--x(o.l})
- Pr (xe (0 hj" (SN - b (seapmy, @n

I<j<n. 1<j<n,
“such that 3= i such that = 0

where
Bx * (0,1} X--X {0,1} = {0,1} (n factors) .

(iii) By varying the distributions o1 (S(Aq). . . .S(Ay)) and
the function gy, the coelficients gy (3. ... a5) can be

. y N
arbitrasily chosen € {0,1}, x ¢ X. Thereare 2~ such
By's. foreach xe X.

Gv) _If. S s such that S(A ). - - . S{A ) arc always statistically
independent, then Eq, (27) reduces te
O ('\l' . .l\n)(x) =

Y (eglap.ny)
k‘l" .a")c
((O.l} X=X (O.l))
. I opttxn - 1

(1 =9, tiixm} 12%)
I<jsay I=i<n )

such rhat such that

4= I a =)

SRR AR
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-Finally, we treai the general situation of an n-homomorphic
induced ordinary set operation being only measurable with
-respect to suitably chosen g-algebras refative to topologies ¥
und I
Consider again the fixed compact Hausdorff topological
spaces (G(X), §7) and (G(X) X+-X G(X), ¥) (n-factors), and
choice function S, where for any Ap .oy Ap € F(X) (S(A ),

- -+ 8(A))) has a specified joint distribution. Thus, each mar-
ginal random subset S(Aj) of X co'xrcsponds to probability
space (P(X),; . ;). as well as to probability space. (G(X),
B j-l’j)- Recall from section 2 the requirement that the 6-
algebra .g,- must contain all C{x}' x € X. Thus, .‘_ijj must con-
tain all & (x,1),-x € X, and hence all countable unions and
intersections of @(x,1), x €.X and & (y,0), y € X. Recall also
that each & (x,1) and & (y,0) are closed-open~compact sub-
sets of G(X) witlrrespect to 3 st follows that cacht %2
:@ 0, the Baire a-algebra generated by all compact - Gg Ge..
compact and represented by an at most countable intersec- )

tion.of open) setsin I~ (Sce (8], sections 51, 52 for general
background.) Note that any typical compact - Gj set hefe is

of the form &(4,2), where Z=(Z)=1, . m€ )nc: G(X)
L j=

) m
anda=(xh=) .. m€ j>=<l {0.1}, where m may be a fimte

positive integer or +o0. (See Halmos (8], Example 4. p. 219,
for a related result.) If X is at most countably snfinite, then
since I will be separable, every compast set in Fwill also be
3 Gg set and thus 38 the Borel o-algebra, generated by all com-
pact-open subsets of F, will be the same as B, ([8). Theor-
em E, p. 218). For X not countable, then genenally B, C B
(proper subclass). While 3 has certain Cesirable propertics. it
does not possess the regularity properties that B, docs.
Analagous results hold for (S(A\}), . .., S(A,)) and 1ts cosses-
ponding probability space (G(X) X--X G(X). & .p), where
o-algebras & D §" D@, with. in genenal @, €D, where § s
the g-algebra generated by By X--X B @, is the Bawre
o-algebr, relative to ¥, generated by B, X=X By andPis
the Borel 0-alecbra generated by B X--XB. Thus, inordet
1o ulilize regulanty propertics, we will say = mapping ¢

G(X) X=X G(X) = G(X) 18 (Bawre) measurable ff v~ 1)
€ @,. (Qearly. if ¥ is continuous, it is measurable.)

Theorem 7
Let n 2 1 be arbutranly fixed and S a gaven choice function
with (S(A}). . . S(A *Mhaving 3 consistent speafied disinbu~
tion for cach Ay, ... A, € FIX), where, motivated by the
previous discussion. it is assumed that the g-algebn conrespon-
thng to each S(.-\,-l 15 B, and the d-algebra corresponding to
(StA). .. StA s 2, Then n-ary furzy set operation &
tluces a weak n-homomorplhism relative to some ordinary
n-ary set operation * hemg meastirable yIf & has the follow-
mg torm, forall x¢ Xo AL - L AL FIRY

OB (A}, ... AN = g'_'f‘* o PBgAyL .., AW

where for cach posttive integer £, Bp(Ay, .-, Ap) s defined
from Eq. (18) with & replaced by @y and cach K, by (finte)
Kx.il' where the limit in Eq. (29) s uniform with respect to
all x € X, and where @'g 15 defined from Eq. (18) with @

400
replaced by e’g and cach K, by K'x,Q ":f tgﬂ K Xt (at most,

countably infinite, and consequently the last part of Eq. (18)
must be replaced by a limit). -

6. SUMMARY AND CONCLUSIONS

Those n-ary fuzzy set operations have been characterized
wi.ich induce weak homomorphic n-ary ordinary sct opera-
tions between random sets, given: (1) any given chosce func-
tion, i.c., mapping between F(X) and S(X) which picks for
cach given fuzzy subsct of X an equivalent random subset of
X up to one point coverages, and (2) any compatible stochas-
tic process._In particular, most ordinary fuzzy set operations
and their géneralizations were shown to induce naturally cor-
responding operations among random sets. (For example, see
Tables I, 2, the remarks in Theorem 6, and Eq. (19).) When
the choice function is either S(A) = SUA(A) orS(A)=T,,

A an arbitrary fuzzy subset of X, a large class of operations
exists (including essentially all of the usual ones and their
generalizations) such that fuzzy sets formed from finite com-

-bination of such operations applicd to moye primitive fuzzy

sets can be identified with corresponding random sets forimed
from similar combnations of ordinary set operat:ons apphed
to their pnmitive random set componzats. Combining this
result with a previous one ([ 16], as Theorems 6 and 7), allows
for complete flexibility in using fuzzy andfor random sets as
inputs in describing an unknown quantity V based on all of
this information,

Future work will be directed towards applications to specific
systems of fuzzy set operations and further investigation of
the relations among choie functions, compatible stochastic
processes over P(X), and weak homomorphisms. Relative to
the Iatter, it is of some interest to determine for a given n-ary
ordinary set operation *, what are the possible corresponding
n-ary fuzzy sct operations @ which induce * homomorphic-
ally {weakly, for example), as the choice function andfor
joint distributions of random scis are made to vary over all
combinations, Conversely. for a fixed fuzzy sct operation,
what possible random set opcrations does it induce as the
choice function and/or joint distribution of random scis vary?

ll!y 3 level set (o2 0 - ut), we mean the ordirmary set 0: [o. 1}

- X.gven furzy set membership function gy X~ [0. 1.
Okasi
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